THE FACILE CYCLOMETALLATION REACTION OF 1,3-BIS[(DIPHENYL PHOSPHINO)METHYL]BENZENE

HEINRICH RIMML and LUIGI M. VENANZI

Laboratorium für Anorganische Chemie, ETH-Zentrum, CH-8092 Zurich (Switzerland)
(Received September 15th, 1983)

Summary

It is shown that 1,3 -bis(diphenylphosphinomethyl)benzene (PCHP) readily undergoes a cyclometallation reaction with nickel(II), palladium(II), and platinum(II) species giving products of the type [MX(PCP)] [M=Ni, Pd, and Pt; $\mathrm{X}=$ halide and PCP = 2,6-bis(diphenylphosphinomethyl)phenyl]. Cyclometallation requires the formation of intermediates trans-[MX_{2} (PCHP)].

The chelating diphosphine 1,3-bis(di-t-butylphosphinomethyl)benzene reacts with nickel(II), palladium(II) and platinum(II) compounds giving cyclometallated species such as $[\mathrm{MCl}(1)], 1=2,6$-bis(di-t-butylphosphinomethyl)phenyl, and the relative ease of this reaction has been attributed to the effect of the bulky substituents [1].

We report here the reactions of the analogous ligand 1,3 -bis(diphenylphosphinomethyl)benzene (2) [2]. This forms cyclometallated derivatives, containing the tridentate moiety 2,6 -bis(diphenylphosphinomethyl)phenyl (3) with great ease if the appropriate substrates and reaction conditions are used.

The reactions carried out and the products obtained are shown in eq. 1 (4: $\mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}$; from 2 and $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}$, room temperature, followed by moist $\mathrm{EtOH} ; 75 \%$. 5 a (5b): $\mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Cl}(\mathrm{Br}) ;\left\{\mathrm{PtCl}_{2}\right\}_{n}$ ($\left\{\mathrm{PtBr}_{2}\right\}_{n}$) in aq. acetone, 10 days, room temperature, ca. $30 \% .5 \mathbf{c}: \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{I}$; from [$\left.\mathrm{Pt}(3) \mathrm{PPh}_{3}\right] \mathrm{Cl}$ (prepared in situ by reacting cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and 2 in acetone, 24 h , room temperature) and NaI (excess) in acetone, ca. 65\%. 6: $\mathrm{M}=$ $\mathrm{Ni}, \mathrm{X}=\mathrm{Cl}$, from $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 2 in $\mathrm{EtOH}, 3 \mathrm{~h} 60^{\circ} \mathrm{C}$, followed by (i-Pr) NEt , 10 min reflux, 69%. All the complexes mentioned above gave satisfactory microanalyses [3]).

It is noteworthy that platinum(II) chloride or bromide (one equivalent in aqueous acetone) react with phosphine 2 giving 5 a or 5 b in moderate yields and mixtures of oligomeric complexes of the type cis- $\left[\mathrm{PtCl}_{2}(3)\right]_{n}$ or $c i s-\left[\mathrm{PtBr}_{2}(3)\right]_{n}$, respectively. However, the reaction of 2 with cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / acetone gives $\left[\mathrm{Pt}(3) \mathrm{PPh}_{3}\right]^{+}[4]$ in high yield. The latter, on addition of sodium iodide, gives 5 c .

Compounds $\mathbf{5 a}$ and $\mathbf{5 b}$ react with NaBH_{4} in moist acetonitrile giving the mononuclear hydride $[\mathrm{PtH}(3)]$. However, the corresponding reaction with the palladium complex 4 or the nickel compound 6 lead either to decomposition or to a mixture of unidentified products, respectively.

Our work indicates that the facile cyclometallation of phosphine 2 is mainly due to the geometry of the complex or complexes formed before cyclometallation occurs. Thus compounds of the type cis-[$\left.\mathrm{MX}_{2}(2)\right]$ do not cyclometallate while the corresponding trans species, which place the $\mathbf{C}-\mathrm{H}$ bond which is to be activated close to the metal center, readily react. This is a well-established effect [5]. Thus, it appears likely that the t-butyl substituents on ligand 1 facilitate its cyclometallation reaction by favouring the formation of trans- $\left[\mathrm{PtCl}_{2}(1)\right]$.

Acknowledgements. Financial support for this work from Ciba-Geigy AG, Basel, and from the Swiss National Science Foundation is gratefully acknowledged.

References

[^0]
[^0]: C.J. Moulton, B.L. Shaw, J. Chem. Soc. Dalton Trans., (1976) 1020.

 2 Prepared by treating 1,2-bis(bromomethyl)benzene with $\mathrm{Ph}, \mathrm{PNa}$ in liquid ammonia.
 3 Their ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data measured in CDCl_{3} 。($\delta(\mathrm{H})=\delta\left({ }^{2} \mathrm{H}\right)(\mathrm{PDm})$ for $\mathrm{CH}_{2} ; J=\left.\right|^{2} J\left({ }^{31} \mathrm{P},{ }^{1} \mathrm{H}\right)+$ ${ }^{4} J\left({ }^{31} \mathrm{P},{ }^{1} \mathrm{H}\right) \mid(\mathrm{Hz}) ; J^{\prime}={ }^{3} J\left({ }^{195} \mathrm{Pt} .{ }^{1} \mathrm{H}\right)(\mathrm{Hz}) ; \delta(\mathrm{P})=\delta\left({ }^{31} \mathrm{P}\right)(\mathrm{pDm})$ relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$; a positive sign indicates a sienal downtield of the resonance (ppm); $J^{\prime \prime}={ }^{1} J^{195}{ }^{19} \mathrm{Pt},{ }^{31} \mathrm{P}$) (Hz); a $=$ singlet; $t=$ triplet or pseudo-triplet) are: 2, $\delta(\mathrm{H}) 3.88(\mathrm{~g}), \delta(\mathrm{P})-10.1 ; 4, \delta(\mathrm{H}) 3.98(\mathrm{t}), \mathrm{J} 4.7, \delta(\mathrm{P}) 38.4 ; 5 \mathrm{~m}, \delta(\mathrm{H}) 3.90(\mathrm{t}), J 4.7$, $J^{\prime} 2 \mathrm{~S}, \delta(\mathrm{P}) 33.1, J 2968 ; 5 \mathrm{~b}, \delta(\mathrm{H}) 3.89(t), J 4.6, J^{\prime} 25, \delta(P) 34.2, J^{\prime \prime} 2983$, sc, $\delta(\mathrm{H}) 8.94(\mathrm{t}), J 4.8, J^{\prime} 25$, $\delta(P)$ 35.2. $J^{\prime \prime}$ 2884; 6, $\delta(H) 3.85(t), J 4.7, \delta(P) 34.6$.
 ${ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right) 20.6 \mathrm{~Hz} ; \delta\left({ }^{31} \mathrm{P}\right.$ of $\left.\mathrm{PPh}_{3}\right) 17.8(\mathrm{t}) \mathrm{ppm} ;{ }^{1} J\left({ }^{19}{ }^{9} \mathrm{Pt}_{1}{ }^{31} \mathrm{P}\right) 2008 \mathrm{~Hz}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left({ }^{1} \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$ 4.42 ppm (pseudotriplet, virtual coupling): ${ }^{3} J\left({ }^{195} \mathrm{Pt},{ }^{1} \mathrm{H}\right) 31.8 \mathrm{~Hz}:\left.\right|^{2} J\left({ }^{31} \mathrm{P},{ }^{1} \mathrm{H}\right)+{ }^{4} J\left({ }^{31} \mathrm{P},{ }^{1} \mathrm{H}\right) \mid 4.3 \mathrm{~Hz}$.

 5 M.I. Bruce, Angew. Chem., 89 (1977) 75.

